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Abstract. We evaluate the Green’s function of tiedimensional relativistic Coulomb system

via sum over perturbation series which is obtained by expanding the exponential containing
the potential termV (x) in the path integral into a power series. The energy spectra and
wavefunctions are extracted from the resulting amplitude.

1. Introduction

Most physical problems cannot be solved exactly. It is therefore necessary to develop
approximation procedures which allow us to approach the exact result with appropriate
accuracy. An important approximation method for solving problems in quantum mechanics
(QM) is the Rayleigh—Sckidinger perturbation theory. It provides us an effective method
of calculating approximate solutions to many problems which cannot be exactly solved by
using the Sctisdinger equation. Similar to the standard QM, the perturbation method can be
developed in the path integral framework of QM [1]. Historically of utmost importance was
the application of the perturbation expansion of path integral to the quantum electrodynamics
by Feynman [2], from which he first derived ‘Feynman’s rules’, which provide an extremely
effective method to calculate the perturbation series and a clear, neat interpretation of the
interaction picture.

In the past 10 years, perturbation expansion of the path integral has been used to
obtain the exact Green'’s functions #function potential problems [3-5, 7], non-relativistic
Coulomb system [6], and to yield the Dirichlet boundary condition by summingsthe
function perturbation series [8, 9].

In this paper, we would like to add a further application of the perturbation method of
the path integral. We calculate the Green'’s function df-dimensional relativistic Coulomb
system via summing over the perturbation series. The energy spectra and wavefunctions
are extracted from the resulting amplitude.

2. Path integral for the relativistic Coulomb system via sum over the perturbation
series

Let us first consider a point particle of mas$é moving at a relativistic velocity in a
(D + D)-dimensional Minkowski space with a given electromagnetic field. By using

1 E-mail address: d793314@phys.nthu.edu.tw

0305-4470/98/377577+08$19.5@C) 1998 IOP Publishing Ltd 7577



7578 De-Hone Lin

t = —it = —ix*/c, the path integral representation of the Green’s function is conveniently
formulated in a(D + 1)-Euclidean spacetime with the Euclidean metric,

(gw) =diag(, ..., 1,¢? )
and it is given by [10, 11]

7 oo -
G(xp, x.; E) = '—/ dS/DpCD[,o]/DDx e Ae/h, )
2Mc 0
The action integral
M . e (E — V() Mc?
Ap = d ! —i—A(x) - x'(r) — 3
E /T T [Zp(t)w (1) —i-A@) - 2'(1) = p(O)——F, 5 + PO 3)

where S is defined by
T
S =/ dr p(7) 4)

a

in which p(t) is an arbitrary dimensionless fluctuating scale variable, @fd] is some
convenient gauge-fixing functional, such @§p] = 8§[p — 1], to fix the value ofp () to
unity [10, 11]. A/Mc is the well known Compton wavelength of a particle of mags
A(x) is the vector potentialy (x) is the scalar potentialf is the system energy, and
is the spatial part of thelf 4+ 1) vectorx = (x, t). This path integral forms the basis for
studying relativistic potential problems.

Expanding the potential terii (x) into a power series and interchanging the order of
integration and summation, we obtain the result

ih [ .
G@n i B) =5 [ ds [ Dpalple O K @y iy ) ©)
0

with the series expansion of the pseudotime propagator

o 1 ,3 n
K(p, Tos T — Ta) = KO+Z_I -
nzln.

LT e[ M P (i 2 (D —p(ry Y@21 [
X/DDxe il dr5 5" (-t A@) @' (1) —p(t) 5,77 / dTl,O(Tl)V(-'B(Tl))

Ta

T Tp

X / drop(2)V(2(12)) - - / dfnp(fn)V(w(fn))} (6)
where we have defined the quantitigs= E/Mc?, £ = (M?c* — E?)/2M ¢?, and
Koy, €t Ty — 7) = f P R R ) )

Ordering ther ast; < 12 < -+ < 1, < 75, and denotinge(t;) = xy, the perturbative series
in equation (6) turns into [1]

00 ,3 n T Ty 2
K (p. Ta: T — Ta) = Ko(@p, Tai T — Ta) + ) (—ﬁ> / drnf dr, 1 .. / dry
n=1 Ta Ta Ta

X / |:l_[ Ko(xji1, Tj; Tjv1 — Tj)i| l_[,OkV(u’Uk) dx (8)
=0 k=1

wherety = 1., T,41 = T, Tyr1 = Tp, andxg = x,. In the case of an attractive Coulomb
potential, we have

2
A(x) =0 Vi) =-< )
r
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The perturbative expansion in equation (8) becomes

2
K(xp, o Ty — 1) = Ko(®p, Tai T — Ta)+2< >/ drn/ dr-1.. / dry

Ta Ta
i dﬂ?k
X l_[ Ko(xji1, Tj; Tj41 — 7)) Pr—- (10)
=0 k=1 Tk

The corresponding amplitud€, takes the form
Ko(xp, a3 Ty — Ta) = / pPye e o [oe e 55 7] (11)

wherea = ¢?/hc is the fine structure constant. We now chodge] = §[p — 1] to fix the
value of p(t) to unity. The Green’s function in equation (5) becomes

2Mc/ dse 7S {Ko(:cb,:ca,S)—f—Z( ) / drn/ dr,_1

Ta

d
/ d‘El/ I:l_[ Ko(xjy1, Tj; Tj41 — fj):| 1_[ ;Zk } (12)

k=1

G(xp, x4 E) =

We observe that the integration ovéris a Laplace transformation. Because of the
convolution property of the Laplace transformation, we obtain

in € d
G(xp, xy; E) = {Go(a:b,a:a,é')—i-Z(ﬁ )/I:HGO(ijrlaiL'jvg)jIl_[ mk}'

k=1 Tk
(13)
We now perform the angular decomposition of equation (13) [11-13]. This can be

reached by inserting in equation (13) the expansiorGefin term of the D-dimensional
hyperspherical harmonics,,, () [14]:

M > . A
D i1 )Y Vim (&) Y (&) (14)

Go(xjy1,xj; ) = —————>—
’ ’ h(rjar)) P2t =

where theg? is given by [13]

ds e e M7, +r])/2hS M rjiar;
/0 Se ' o I«/(Z+D/271)27a2 7S : (15)

The notation/ denotes the modified Bessel function. Integrating over the intermediate
angular part of equation (13), we arrive at

in & . ow n
G@y, x4 E) = 5 ; Gi(rp, 10 ) ; Yim (&) Y (&a).- (16)
The pure radial amplitudé&, (rp, r,; £) has the form
. M 1 =\ (MBe2\" _
G[(rb,ra,g) = f(rbra)D/Z—l ; < ]/—l2 ) gl (rbvrav g) (17)

with g™ given by

gl(")(”bv rai &) = / .. / |:l_[gl(o)(l’j+1, T 5)i| 1_[ dry. (18)
0 0 j=0 k=1
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™ we note that

To obtain the explicit result o

o _
/ d_Sef%SefM(rerr“z)/ZhSI
0

M rpr,
S Jutp-12-? \ g
2¢.\/Tvra
T, ) (19)

o0 1
=2 dz . e*’\’(errra) COtth :
/(; sinhz 2,/(+D/2-1)2—a? sinhz

with x = v M?2c* — E2/hc. The equality in equation (19) can be easily proved by the
formulae

/ dy & exp[—%({a ) cothy} I, (” M“)
0

sinhy sinhy
NA+w/2-v)
= W, M, u 20
JelT it D) w2)M,y, 4 2(t8s) (20)
with the range of validity
& > o > 0

Re[1+w)/2—-v] >0
Re(t) > O, |argt| < 7
whereM,, , andW, , are the Whittaker functions, and

/ d_ye—zye—(a2+b2)/)’]v (@) — ZIV(Zaﬁ)KV(Zbﬁ) (21)
o Y Yy

with the range of validity
a<b Rez > 0.
From equation (19), using the formula

/ drre 0, (cr) 1, (Er) = C—zleﬂ@zﬂz)/“lv (“%) (22)
0

we obtain

o0
8y, a3 E) =/ 0y, )80 (ry 1 ) dr
0

22 [e9)
= _/ Zh(Z) dZ (23)
K Jo
where the functiori(z) is defined as
1 : 2 \/Tyra
= ke (rp+r,) cothz a
@)= Sinhz® 2,/(+Dj2-172—o? ( Sinhz ) : (24)

The expression fog,(”)(rb, rq; €) can be obtained by induction with respectitpand is
given by
2n+1 1 o0

n! k"

8" (rp.ra1 &) = 2"h(z) dz. (25)

Inserting the expression in equation (17), we obtain
M 2
h (rbra)D/27l

X /OC dZ e( 2/;:’2'35)2 ie—l((rb-ﬁ-ra)cmhz] 2’(\/ rbra) ) (26)
0

sinhz 2,/U+D/2- 12— ( sinhz

Gi(rp, rq; E) =
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With help of the formula in equation (20), we complete the integration of equation (26),
and find the radial Green’s function feg > r, in the closed form,

1 Mc
st (Dfl)/z 2,4 _ 2
(rora) M?2c4 — E

(1/2+\/(Z+D/2 1)2—()[2 W)
F<1+2\/(1+D/2—1)2—01)
*W__g A/(+Dj2— 1)2—a2( v MZct — Ez”’)

VA2’
/M2c4 — E2
Mz(j; . \/m( M<4c E ra) . (27)
The energy spectra and wavefunctions can be extracted from the poles of equation (27).
For convenience, we define the following variables

Gi(ry,rq; E) =

X

1
Kk = E—\/ M?2c* — E2
C
E
Y LI (28)
M?2c* — E?
- 1
=V(+D/2—1)2—a?— >
From the poles ofG,(r,, r,; E) we find that the energy levels must satisfy the equality
—v+Il+1=—n, n,=0,1,23,.... (29)

Expanding this equation into powers @f we get

E ’Vj:Mcz{l—} i C o
n A 2|n+3(D-3 [n+3(D-3)]3
1 3 1 .
* |:2[l+%(D—2)] - 8[n+%(D—3)]i| + O )}' (30)

Heren is defined byn, = n — [ — 1. We point out that by settingp = 3, the energy levels
reduce to the well known form

10 o4 1 3
EnmamM{i—=(4) =4 -2 — 214 0@ 31
: C{ > () n3|:21+l 8ni|+ (“)} (1)

The pole positions, which satisfy = 71, = n+1—1 (n = [+ 1,1+ 2,1+ 3,...),
correspond to the bound states of thedimensional relativistic Coulomb system. Near the
positive-energy poles, we use the behaviounfee 7,

(=) 1 ( E )2 2hMc?

—I(—v+I1+ 1)—
Mc?) E2 - E2

(32)

in,\ ay

the radial quantum number, to extract the wavefunctions of Rh#dimensional Coulomb
system

Gil £ i i < E >2 2hM c?
IAYRY - -
‘ (rbra)(D_l)/z n=I+1 MCZ EZ_E:%Z
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~ = I+1
«—t 1 Gt e—<m+rﬂ>/aﬂﬁz< 2y 2rq )+
[(2 + D)2 Acay (n—1— 1!

- 2r - 2r
xM(—n+l+1,21+2; - l:)M(—n—i—l—i—l,Zl—l-Z; - f)

apny iy

agng apgn;
i > [ E \ 2hiMc? i
= — —(rbr )(D—l)/z Zl <—MC2) _E2 — E21 Rnl (rb)Rnl (ru) + .- (33)
a n=I[+ n

where we have expressed the Whittaker funciin, (z) in terms of the Kummer functions
M(a, b; ),

My (2) = 22 PM(u — 2+ 3,20 + 1 2). (34)

From this we obtain the radial wavefunctions

R 1 1 (i + D) < 2r )”1
n\r) = = ~ =~
: aal? @+ 1\ (n—1— D! \api

o - 2
x e /ani g (—n +I1+1,20+2; %) ) (35)

agn|

The normalized wavefunctions are given by

1 N
lI’nln@(m) = r(Tl)/anl(r)Y]m(m)- (36)

Before extracting the continuous wavefunction we note that the paramésereal for
|E| < Mc?. For |E| > Mc?, the square root in equation (28) has two imaginary solutions

~ ~ 1
Kk = Fik k v EZ— M2c* (37)

hie

corresponding to

Eo
T
Therefore the amplitude has a right-handed cut for> Mc¢? and E < —Mc?. For
simplicity, we will only consider the positive energy cut.

The continuous wavefunction is recovered from the discontinuity of the amplitudes
G(rp, rs; E) across the cut in the complgx plane. Hence we have

v =4iv D

(38)

i . 2y _ . i . in) —
dISCGZ(rbvrav E > MC ) - Gl(rlh Ta, E+|r)) - Gl(rbvrav E — ”I) - _(Vbra)(Dil)/z

M | T(=iv+1+1)
X—= | ———m—m/m///
hk

Wis i41/0(—2ikry) Mig 1 o(=2ikrg) + (0 — —f))} )

2 + 1)!
(39)
Using the relations
Myu(2) = € mEHD2Y L (—2) (40)
where the sign is positive or negative depending on whether3n® or Imz < 0, and
Wi u(z) = é”’\e‘i”(’”;’% [Mw(z) — FEfzf—;r:)%)e‘i”*W_)\,u(e‘i”z)i|

(41)
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which is valid only for arg(z) € (—n/2,37/2) and 2« # —-1,-2,-3,.... The
discontinuity of the amplitude is found to be

i MIT(—=iv+14+ D)2
(rpra) P~V Rk |02 + 2)2

discG,(rp, ra; E > Mc?) = —

<& M it 1(2Ikrb)M - 1(=2ikr,). (42)
v E i
Thus we have
* dE 1 [~ (Rokdk
/MCZ andISCG,(rb, ra; E > Mc?) = > | Ldlstﬁ/(i’b, rai E > Mc?)

M2c4 4 (hck)?

i o E
= T )12 f dk ( > Ry (rp) R, (ra). (43)

From this, we obtain the continuous radial wavefunction of fhelimensional relativistic
Coulomb system

[1 1 IT(=iD4+1+ D] 5 -
Ry(r) =/ - &M g 0 (—2ikr) 44
! 7o (%)2]1/2 @+ 1! e @

= o e Dl izt iy

XM(—=iv 41+ 1,2 4 2; —2ikr). (45)

It is easy to check the result is in accordance with the non-relativistic wavefunction when
we take the non-relativistic limit.

3. Concluding remarks

In this paper we have calculated the Green’s function of the relativistic Coulomb system

via sum over perturbation series. From the resulting amplitude, the energy levels and
wavefunctions are given. Different from the conventional treatment in path integral using the

spacetime and Kustaanheimo-Stiefel transformation techniques (e.g. [11, 13]), the method
presented here just involves the computation of the expectation value of the maogfents

(0 = f;” drp(t)V(x(z))) over the measure

i 2 )2
Ko(xp, Ta; Tp — 1) = / DPxe ik di [ e 0-r0) 5 |
and summing them in accordance with the Feynman—Kac formula [16]

ih o0 f
G(xy, x,: E) = %/ dsf Dp®[ple i Jua dr®E
0

xE [exp{—%/rb dr p(r)V(m(r))”

/ dequ)[p]e rfbdfp(‘r)SZ( ,B/h)n

xE[(frh dr ,o(r)V(a:(r))) ] (46)
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where the notatiorE [x] stands for the expectation value of the moment
We hope that the procedure presented in this paper may help us to obtain the results of
other interesting relativistic systems.
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