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China
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Abstract. We evaluate the Green’s function of theD-dimensional relativistic Coulomb system
via sum over perturbation series which is obtained by expanding the exponential containing
the potential termV (x) in the path integral into a power series. The energy spectra and
wavefunctions are extracted from the resulting amplitude.

1. Introduction

Most physical problems cannot be solved exactly. It is therefore necessary to develop
approximation procedures which allow us to approach the exact result with appropriate
accuracy. An important approximation method for solving problems in quantum mechanics
(QM) is the Rayleigh–Schrödinger perturbation theory. It provides us an effective method
of calculating approximate solutions to many problems which cannot be exactly solved by
using the Schr̈odinger equation. Similar to the standard QM, the perturbation method can be
developed in the path integral framework of QM [1]. Historically of utmost importance was
the application of the perturbation expansion of path integral to the quantum electrodynamics
by Feynman [2], from which he first derived ‘Feynman’s rules’, which provide an extremely
effective method to calculate the perturbation series and a clear, neat interpretation of the
interaction picture.

In the past 10 years, perturbation expansion of the path integral has been used to
obtain the exact Green’s functions forδ-function potential problems [3–5, 7], non-relativistic
Coulomb system [6], and to yield the Dirichlet boundary condition by summing theδ-
function perturbation series [8, 9].

In this paper, we would like to add a further application of the perturbation method of
the path integral. We calculate the Green’s function of aD-dimensional relativistic Coulomb
system via summing over the perturbation series. The energy spectra and wavefunctions
are extracted from the resulting amplitude.

2. Path integral for the relativistic Coulomb system via sum over the perturbation
series

Let us first consider a point particle of massM moving at a relativistic velocity in a
(D + 1)-dimensional Minkowski space with a given electromagnetic field. By using
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t = −iτ = −ix4/c, the path integral representation of the Green’s function is conveniently
formulated in a(D + 1)-Euclidean spacetime with the Euclidean metric,

(gµν) = diag(1, . . . ,1, c2) (1)

and it is given by [10, 11]

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS
∫
Dρ8[ρ]

∫
DDx e−AE/h̄. (2)

The action integral

AE =
∫ τb

τa

dτ

[
M

2ρ(τ)
x′

2
(τ )− i

e

c
A(x) · x′(τ )− ρ(τ) (E − V (x))

2

2Mc2
+ ρ(τ)Mc

2

2

]
(3)

whereS is defined by

S =
∫ τb

τa

dτ ρ(τ) (4)

in which ρ(τ) is an arbitrary dimensionless fluctuating scale variable, and8[ρ] is some
convenient gauge-fixing functional, such as8[ρ] = δ[ρ − 1], to fix the value ofρ(τ) to
unity [10, 11]. h̄/Mc is the well known Compton wavelength of a particle of massM,
A(x) is the vector potential,V (x) is the scalar potential,E is the system energy, andx
is the spatial part of the (D + 1) vectorx = (x, τ ). This path integral forms the basis for
studying relativistic potential problems.

Expanding the potential termV (x) into a power series and interchanging the order of
integration and summation, we obtain the result

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS
∫
Dρ8[ρ]e−

1
h̄

∫ τb
τa

dτρ(τ)EK(xb,xa; τb − τa) (5)

with the series expansion of the pseudotime propagator

K(xb,xa; τb − τa) =
{
K0+

∞∑
n=1

1

n!

(
−β
h̄

)n
×
∫
DDxe−

1
h̄

∫ τb
τa

dτ [ M
2ρ(τ)x

′2(τ )−i e
c
A(x)·x′(τ )−ρ(τ) V (x)2

2Mc2
]
∫ τb

τa

dτ1ρ(τ1)V (x(τ1))

×
∫ τb

τa

dτ2ρ(τ2)V (x(τ2)) · · ·
∫ τb

τa

dτnρ(τn)V (x(τn))

}
(6)

where we have defined the quantitiesβ = E/Mc2, E = (M2c4− E2)/2Mc2, and

K0(xb,xa; τb − τa) =
∫
DDxe−

1
h̄

∫ τb
τa

dτ [ M
2ρ(τ)x

′2(τ )−i e
c
A(x)·x′(τ )−ρ(τ) V (x)2

2Mc2
]
. (7)

Ordering theτ asτ1 < τ2 < · · · < τn < τb and denotingx(τk) = xk, the perturbative series
in equation (6) turns into [1]

K(xb,xa; τb − τa) = K0(xb,xa; τb − τa)+
∞∑
n=1

(
−β
h̄

)n ∫ τb

τa

dτn

∫ τn

τa

dτn−1 . . .

∫ τ2

τa

dτ1

×
∫ [ n∏

j=0

K0(xj+1,xj ; τj+1− τj )
] n∏
k=1

ρkV (xk) dxk (8)

whereτ0 = τa, τn+1 = τb,xn+1 = xb, andx0 = xa. In the case of an attractive Coulomb
potential, we have

A(x) = 0 V (r) = −e
2

r
. (9)
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The perturbative expansion in equation (8) becomes

K(xb,xa; τb − τa) = K0(xb,xa; τb − τa)+
∞∑
n=1

(
βe2

h̄

)n ∫ τb

τa

dτn

∫ τn

τa

dτn−1 . . .

∫ τ2

τa

dτ1

×
∫ [ n∏

j=0

K0(xj+1,xj ; τj+1− τj )
] n∏
k=1

ρk
dxk
rk
. (10)

The corresponding amplitudeK0 takes the form

K0(xb,xa; τb − τa) =
∫
DDxe

− 1
h̄

∫ τb
τa

dτ
[

M
2ρ(τ)x

′2(τ )−ρ(τ) h̄2

2M
α2

r2

]
(11)

whereα = e2/h̄c is the fine structure constant. We now choose8[ρ] = δ[ρ − 1] to fix the
value ofρ(τ) to unity. The Green’s function in equation (5) becomes

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dSe−
E
h̄
S

{
K0(xb,xa; S)+

∞∑
n=1

(
βe2

h̄

)n ∫ τb

τa

dτn

∫ τn

τa

dτn−1

. . .

∫ τ2

τa

dτ1

∫ [ n∏
j=0

K0(xj+1,xj ; τj+1− τj )
] n∏
k=1

dxk
rk

}
. (12)

We observe that the integration overS is a Laplace transformation. Because of the
convolution property of the Laplace transformation, we obtain

G(xb,xa;E) = ih̄

2Mc

{
G0(xb,xa; E)+

∞∑
n=1

(
βe2

h̄

)n ∫ [ n∏
j=0

G0(xj+1,xj ; E)
] n∏
k=1

dxk
rk

}
.

(13)

We now perform the angular decomposition of equation (13) [11–13]. This can be
reached by inserting in equation (13) the expansion ofG0 in term of theD-dimensional
hyperspherical harmonicsYlm(x̂) [14]:

G0(xj+1,xj ; E) = M

h̄(rj+1rj )D/2−1

∞∑
l=0

g0
l (rj+1, rj ; E)

∑
m

Ylm(x̂j+1)Y
∗
lm(x̂j ) (14)

where theg0
l is given by [13]∫ ∞

0

dS

S
e−

E
h̄
Se−M(r

2
j+1+r2

j )/2h̄SI√
(l+D/2−1)2−α2

(
M

h̄

rj+1rj

S

)
. (15)

The notationI denotes the modified Bessel function. Integrating over the intermediate
angular part of equation (13), we arrive at

G(xb,xa;E) = ih̄

2Mc

∞∑
l=0

Gl(rb, ra; E)
∑
m

Ylm(x̂b)Y
∗
lm(x̂a). (16)

The pure radial amplitudeGl(rb, ra; E) has the form

Gl(rb, ra; E) = M

h̄

1

(rbra)D/2−1

∞∑
n=0

(
Mβe2

h̄2

)n
g
(n)
l (rb, ra; E) (17)

with g(n)l given by

g
(n)
l (rb, ra; E) =

∫ ∞
0
· · ·
∫ ∞

0

[ n∏
j=0

g
(0)
l (rj+1, rj ; E)

] n∏
k=1

drk. (18)
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To obtain the explicit result ofg(n)l , we note that∫ ∞
0

dS

S
e−

E
h̄
Se−M(r

2
b+r2

a )/2h̄SI√
(l+D/2−1)2−α2

(
M

h̄

rbra

S

)
= 2

∫ ∞
0

dz
1

sinhz
e−κ(rb+ra) cothzI

2
√
(l+D/2−1)2−α2

(
2κ
√
rbra

sinhz

)
(19)

with κ = √M2c4− E2/h̄c. The equality in equation (19) can be easily proved by the
formulae∫ ∞

0
dy

e2νy

sinhy
exp

[
− t

2
(ζa + ζb) cothy

]
Iµ

(
t
√
ζbζa

sinhy

)
= 0((1+ µ)/2− ν)

t
√
ζbζa0(µ+ 1)

Wν,µ/2(tζb)Mν,µ/2(tζa) (20)

with the range of validity

ζb > ζa > 0

Re [(1+ µ)/2− ν] > 0

Re(t) > 0, | argt | < π

whereMµ,ν andWµ,ν are the Whittaker functions, and∫ ∞
0

dy

y
e−zye−(a

2+b2)/yIν

(
2ab

y

)
= 2Iν(2a

√
z)Kν(2b

√
z) (21)

with the range of validity

a < b Rez > 0.

From equation (19), using the formula∫ ∞
0

dr r e−r
2/aIν(ςr)Iν(ξr) = a

2
ea(ξ

2+ς2)/4Iν

(
aξς

2

)
(22)

we obtain

g
(1)
l (rb, ra; E) =

∫ ∞
0
g
(0)
l (rb, r; E)g(0)l (r, ra; E) dr

= 22

κ

∫ ∞
0
zh(z) dz (23)

where the functionh(z) is defined as

h(z) = 1

sinhz
e−κ(rb+ra) cothzI

2
√
(l+D/2−1)2−α2

(
2κ
√
rbra

sinhz

)
. (24)

The expression forg(n)l (rb, ra; E) can be obtained by induction with respect ton, and is
given by

g
(n)
l (rb, ra; E) =

2n+1

n!

1

κn

∫ ∞
0
znh(z) dz. (25)

Inserting the expression in equation (17), we obtain

Gl(rb, ra; E) = M

h̄

2

(rbra)D/2−1

×
∫ ∞

0
dz e

(
2Mβe2

h̄2κ

)
z 1

sinhz
e−κ(rb+ra) cothzI

2
√
(l+D/2−1)2−α2

(
2κ
√
rbra

sinhz

)
. (26)
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With help of the formula in equation (20), we complete the integration of equation (26),
and find the radial Green’s function forrb > ra in the closed form,

Gl(rb, ra;E) = 1

(rbra)(D−1)/2

Mc√
M2c4− E2

×
0
(

1/2+
√
(l +D/2− 1)2− α2− Eα√

M2c4−E2

)
0
(

1+ 2
√
(l +D/2− 1)2− α2

)
×W Eα√

M2c4−E2
,
√
(l+D/2−1)2−α2

(
2

h̄c

√
M2c4− E2rb

)
×M Eα√

M2c4−E2
,
√
(l+D/2−1)2−α2

(
2

h̄c

√
M2c4− E2ra

)
. (27)

The energy spectra and wavefunctions can be extracted from the poles of equation (27).
For convenience, we define the following variables

κ = 1

h̄c

√
M2c4− E2

ν = αE√
M2c4− E2

l̃ =
√
(l +D/2− 1)2− α2− 1

2
.

(28)

From the poles ofGl(rb, ra;E) we find that the energy levels must satisfy the equality

−ν + l̃ + 1= −nr nr = 0, 1, 2, 3, . . . . (29)

Expanding this equation into powers ofα, we get

Enl ≈ ±Mc2

{
1− 1

2

[
α

n+ 1
2(D − 3)

]2

− α4

[n+ 1
2(D − 3)]3

×
[

1

2[l + 1
2(D − 2)]

− 3

8

1

[n+ 1
2(D − 3)]

]
+O(α6)

}
. (30)

Heren is defined bynr = n− l − 1. We point out that by settingD = 3, the energy levels
reduce to the well known form

Enl ≈ ±Mc2

{
1− 1

2

(α
n

)2
− α

4

n3

[
1

2l + 1
− 3

8n

]
+O(α6)

}
. (31)

The pole positions, which satisfyν = ñl ≡ n + l̃ − l (n = l + 1, l + 2, l + 3, . . .),
correspond to the bound states of theD-dimensional relativistic Coulomb system. Near the
positive-energy poles, we use the behaviour forν ≈ ñl ,

−0(−ν + l̃ + 1)
M

h̄κ
≈ (−)nr
ñ2
l nr !

1

ãH

(
E

Mc2

)2 2h̄Mc2

E2− E2
nl

(32)

with ãH ≡ aH Mc2

E
being the modified energy-dependent Bohr radius andnr = n − l − 1

the radial quantum number, to extract the wavefunctions of theD-dimensional Coulomb
system

Gl(rb, ra;E) = − i

(rbra)(D−1)/2

∞∑
n=l+1

(
E

Mc2

)2 2h̄Mc2

E2− E2
nl
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× 1

[(2l̃ + 1)!] 2

1

ñ2
l ãH

(ñl + l̃)!
(n− l − 1)!

e−(rb+ra)/ãH ñl
(

2rb
ãH ñl

2ra
ãH ñl

)l̃+1

×M
(
−n+ l + 1, 2l̃ + 2; 2rb

ãH ñl

)
M

(
−n+ l + 1, 2l̃ + 2; 2ra

ãH ñl

)
= − i

(rbra)(D−1)/2

∞∑
n=l+1

(
E

Mc2

)2 2h̄Mc2

E2− E2
nl

Rnl(rb)R
∗
nl(ra)+ · · · (33)

where we have expressed the Whittaker functionMλ,µ(z) in terms of the Kummer functions
M(a, b; z),

Mλ,µ(z) = zµ+1/2e−z/2M(µ− λ+ 1
2, 2µ+ 1; z). (34)

From this we obtain the radial wavefunctions

Rnl(r) = 1

ñl ã
1/2
H

1

(2l̃ + 1)!

√
(ñl + l̃)!

(n− l − 1)!

(
2r

ãH ñl

)l̃+1

×e−r/ãH ñlM
(
−n+ l + 1, 2l̃ + 2; 2r

ãH ñl

)
. (35)

The normalized wavefunctions are given by

9nlm(x) = 1

r(D−1)/2
Rnl(r)Ylm(x̂). (36)

Before extracting the continuous wavefunction we note that the parameterκ is real for
|E| < Mc2. For |E| > Mc2, the square root in equation (28) has two imaginary solutions

κ = ∓ik̃ k̃ = 1

h̄c

√
E2−M2c4 (37)

corresponding to

ν = ±iν̃ ν̃ = Eα

h̄ck̃
. (38)

Therefore the amplitude has a right-handed cut forE > Mc2 and E < −Mc2. For
simplicity, we will only consider the positive energy cut.

The continuous wavefunction is recovered from the discontinuity of the amplitudes
Gl(rb, ra;E) across the cut in the complexE plane. Hence we have

discGl(rb, ra;E > Mc2) = Gl(rb, ra;E + iη)−Gl(rb, ra;E − iη) = − i

(rbra)(D−1)/2

×M
h̄k̃

[
0(−iν̃ + l̃ + 1)

(2l̃ + 1)!
Wiν̃,l̃+1/2(−2ik̃rb)Miν̃,l̃+1/2(−2ik̃ra)+ (ν̃ →−ν̃)

]
.

(39)

Using the relations

Mκ,µ(z) = e±iπ(2µ+1)/2M−κ,µ(−z) (40)

where the sign is positive or negative depending on whether Imz > 0 or Imz < 0, and

Wλ,µ(z) = eiπλe−iπ(µ+ 1
2 )
0(µ+ λ+ 1

2)

0(2µ+ 1)

[
Mλ,µ(z)− 0(2µ+ 1)

0(µ− λ+ 1
2)

e−iπλW−λ,µ(e−iπz)

]
(41)
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which is valid only for arg (z) ∈ (−π/2, 3π/2) and 2µ 6= −1,−2,−3, . . . . The
discontinuity of the amplitude is found to be

discGl(rb, ra;E > Mc2) = − i

(rbra)(D−1)/2

M

h̄k̃

|0(−iν̃ + l̃ + 1)|2
|0(2l̃ + 2)|2

×eπν̃M−iν̃,l̃+ 1
2
(2ik̃rb)M

iν̃,l̃+ 1
2
(−2ik̃ra). (42)

Thus we have∫ ∞
Mc2

dE

2πh̄
discGl(rb, ra;E > Mc2) = 1

2πh̄

∫ ∞
−∞

(h̄c)2k̃dk̃√
M2c4+ (h̄ck̃)2

discGl(rb, ra;E > Mc2)

= − i

(rbra)(D−1)/2

∫ ∞
−∞

dk̃

(
E

Mc2

)
Rk̃l(rb)R

∗
k̃l
(ra). (43)

From this, we obtain the continuous radial wavefunction of theD-dimensional relativistic
Coulomb system

Rk̃l(r) =
√

1

2π

1[
1+ ( ch̄k̃

Mc2 )
2
]1/2

|0(−iν̃ + l̃ + 1)|
(2l̃ + 1)!

eπν̃/2Miν̃,l̃+1/2(−2ik̃r) (44)

=
√

1

2π

1[
1+ ( ch̄k̃

Mc2 )
2
]1/2

|0(−iν̃ + l̃ + 1)|
(2l̃ + 1)!

eπν̃/2eik̃r (−2ik̃r)l̃+1

×M(−iν̃ + l̃ + 1, 2l̃ + 2;−2ik̃r). (45)

It is easy to check the result is in accordance with the non-relativistic wavefunction when
we take the non-relativistic limit.

3. Concluding remarks

In this paper we have calculated the Green’s function of the relativistic Coulomb system
via sum over perturbation series. From the resulting amplitude, the energy levels and
wavefunctions are given. Different from the conventional treatment in path integral using the
spacetime and Kustaanheimo–Stiefel transformation techniques (e.g. [11, 13]), the method
presented here just involves the computation of the expectation value of the momentsQn

(Q = ∫ τb
τa

dτρ(τ)V (x(τ ))) over the measure

K0(xb,xa; τb − τa) =
∫
DDx e

− 1
h̄

∫ τb
τa

dτ
[

M
2ρ(τ)x

′2(τ )−ρ(τ) V (x)2
2Mc2

]

and summing them in accordance with the Feynman–Kac formula [16]

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dS
∫
Dρ8[ρ]e−

1
h̄

∫ τb
τa

dτρ(τ)E

×E
[

exp

{
−1

h̄

∫ τb

τa

dτ ρ(τ)V (x(τ ))

}]
= ih̄

2Mc

∫ ∞
0

dS
∫
Dρ8[ρ]e−

1
h̄

∫ τb
τa

dτρ(τ)E
∞∑
n=1

(−β/h̄)
n!

n

×E
[(∫ τb

τa

dτ ρ(τ)V (x(τ ))

)n]
(46)
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where the notationE [?] stands for the expectation value of the moment?.
We hope that the procedure presented in this paper may help us to obtain the results of

other interesting relativistic systems.
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